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SUMMARY

The study was conducted to demonstrate the feasibility of low-
cost, conformal, printed circuit board arrays. Development was
concentrated in three basic areas: waveguide to microstrip tran-
sitions, a 4x4 element array at 35 GHz, and a 4x4 array at 60
GHz. The program was successful in each area of investigation.

e Waveguide iris and probe-type transitions were
investigated. The probe-type transition is
presently being employed at 60 GHz while both
coaxial and probe-type transitions are being
used at 35 GHz.

e Two variations of a 35 GHz 4x4 element array were
developed, fabricated and tested. Results demon-
strate the feasibility of microstrip millimeter
arrays at 35 GHz with efficiencies of approximately
175

e Two variations of a 60 GHz 4x4 element array were
developed, fabricated and tested. Results demon-
strate the feasibility of microstrip millimeter ar-
rays at 60 GHz with efficiencies of approximately
78%.

BBRC has significantly advanced the microstrip millimeter array
technology in all areas of design, including simplicity in de-
sign, monolithic in construction, conformal in mounting, and at
relatively low cost *“"*'ﬂ
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Section 1
THEORY OF MICROSTRIP

1.1 BASIC MICROSTRIP ANTENNA CONFIGURATION

The linearly polarized microstrip element is basically a two-slot
radiator1 as shown in Figure 1-1. The two slots are separated

$LOVS FORMED
:“!‘Iw&‘l‘l COPPER GROUND . ANE

orELECTRIC

Figure 1-1 Linearly Polarized Microstrip Element

by a length of very low impedance transmission line. The length
of this line can be made just short of a half wavelength so that
the complex admittance G of Slot A is transformed to G, at Slot
B where it is added in parallel with the admittance Gs of Slot B.
The result is a real admittance corresponding to the radiation
admittance of the antenna plus a small loss component.

Losses depend mostly on the loss tangent of the dielectric mater-
ial and to a lesser degree on thickness of the dielectric material
and the conductivity of the conducting surfaces. The dimensions
of the cavity may be expressed analytically as:

Lsiot = %‘- (———) (1-1)

o |

T
K

/ET

Lcavity x % (

), for K«1 (1-2)

1 R.E. Munson, '"Conformal Microstrip Antennas and Microstrip Phased

Arrays,'" IEEE Transactions on Antennas and Propagation, Vol. AP-22,
No. 1, January 1974, pp. 74-78.
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where ) is the free space wavelength, K accounts for radiator
edge capacitance, and g is the real part of the dielectric constant.

Figure 1-2 is a sectional representation of the electric field

COPPER GROUND PLANE

Figure 1-2 Electric Field in Vicinity of Microstrip Element

in the vicinity of a microstrip radiator. Since the element is
about a half wavelength long in the dielectric, the field at one
end of the microstrip cavity is reversed from that at the other
end of the cavity. However, the radiated fields are in phase
and tend to add in the broadside direction. Figure 1-3 shows

a typical E-plane pattern attributable to these fields.
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Figure 1-3 I-Plane Radiation Pattern of linearly
Polarized Microstrip Element
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Ee 2 INPUT TMPEDANCE AND FEED NETWORKS

Microstrip antenna elements may be fed by a feed line etched on

the same surface as the radiating element or by a feedthrough

connection from the rear side of the circuit board.

For etched feed lines the line width required for a given char-

acteristic impedance can be calculated using the well-known form-

ulas for a narrow strip conductor above a conducting ground plane

or by reference to an empirically-derived design curve.

l/{i- — 1100
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L __,4 Loz a2

1009
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x/41

+1108
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500

input

708

1008

+110Q

Figure 1-4 Typical Microstrip Feed Network

Figure 1-4 shows a typical feed network using quarterwave trans-

formers to transform the driving impedance of the radiating el-

ement to that of the input po

: o W

The microstrip radiator shown in Figure 1-4 is shown in cross-

R e T e T et A
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MICROSTRIP RADIATOR (COPPER)

sLoT 8 _—SLOT A

CTIRIC ———
DIELE —— THICKNESS - a

GROUND
PLANE (COPPLR)

Figure 1-5 Microstrip Radiator - Cross Section View in L-Plane

section view in Figure 1-5. Gap A is an infinitesimal slot
(in 0.010" microstrip a/X =z 0.03 at 35 GHz). The admittance
of a slot radiator is given in Harrington3 for small ka(a/X<0.1)

which is always the case in microstrip antenna practice.

2
g as kgl (ka)
a AN 24 (1-3)
Ba ~ 3.135 - 2 log ka (1-4)

An

In most microstrip applications ka/24<<1 and the conductance
simplifies to G, = m/An = 1/ (A+120am)  or R; = 1201 Qem. The
conductance is expressed in per unit length so that the resis-
tance of the Slot A in Figure 1-5 is obtained by dividing R; by
the length

/
. Ra o 120% ; f
L iEh i Afd i (1-5) F

3 R.F. Harrington, Time Harmonic Electromagnetic Fields, New

York, McGraw Hill, p. 276.
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In the case of the microstrip radiator, the conductance and sus-

ceptance of Slots A and B are equal [Ca = GB’ B = BB). However,

when the admittance of slot B is transformed acioss the radiator to
the feedpoint of slot A, it becomes conjugate complex provided the
radiator width is chosen appropriately. Since the characteristic
impedance of the transmission line formed by radiating element and
~zound plane is very low, the appropriate width deviates only slightly

-om %. The admittance at the feedpoint then becomes:

YF = (Ga > iBa) & (GB = iBB) [1-8)

i% and since Ba = Bb and Ga = GB

b | Y. = 2.6 (1-7)
i : I3 a
: R
(5553 R =1 _ "&a . 230 . -8
1 76 =i 5 120Q (1-8}

In practice, this is the measured impedance. This theory is ac-
E curate in predicting the input impedances for many designs each
with different frequencies, thicknesses, and radiator widths.

2 R BANDWTDTH

The bandwidth of a microstrip antenna system is principally deter-
mined by the resonant radiating element. In terms of the dielec-
tric thickness, t (inches) and the operating frequency, fo (GHz)
the bandwidth Af (MHz) to the points at which the VSWR = 2.0:1

is given by the following empirically-derived equation

4f§t :
Af = 3 (MHz) = 128£2¢ (1-9)

For antenna systems consisting of more than one resonant element,
‘.i the bandwidth is also affected by the degree of coupling between
%i the elements and their individual resonant frequencies. These
effects are most conveniently handled by analysis of experimental
results obtained during the development of specific antenna con- |
figurations.




Section 2
COAX AND WAVEGUIDE TO MICROSTRIP TRANSITIONS

[§9]

S COAX/MICROSTRIP TRANSITION

The coax/microstrip transition (Figure 2-1) was employed on the

0SSM Dielectric
Connectof\‘ —4Dielectric

% -Feed Point ~Feed Line

Metal | g ;
Ground Plane Feed Point

Figure 2-1 Coax/Microstrip Transition

35 GHz arrays because of its simplicity, ease in fabrication, and
repeatability. This technique is identical to the typical approach
used in microstrip antennas at lower frequencies. In this appli-
cation an OSSM* coaxial connector is soldered to the ground plane,
or backplate of the array. The inner conductor is extended through
a hole in the dielectric substrate and soldered to the array feed

network.

Omni Spectra, Incorporated data indicates an upper frequency limit
of 38 GHz for OSSM* connectors due to higher order moding problems;
therefore, operating problems in using OSSM* connectors would appear
to be limited to insertion loss. Using Omni Spectra, Incorporated

figures, maximum insertion loss is defined by

Insertion Loss = 0.03 /frequency (GHz) dBmax (2-1)

This represents an insertion loss of approximately 0.18 dB maximum
at 35 GHz.

* Subminiature connector similar in design and construction to the
SMA series connectors.

10
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2.2 WAVEGULDE (IRLIS)/MICROSTRIP TRANSITION

Due to the higher order moding problems in coaxial components above
38 GHz, and the common use of waveguide in millimeter applications,
a program was undertaken to develop a practical waveguide-to-

i

{

2

§ microstrip transition.

i The waveguide iris approach shown in Figure 2-2 is a modification

1 EENCALENCN, TN A A

r__/Dielect:ric

Feed Line

1 Wavegui‘le

|

e r S

Iris——j—— Feed Line :i ( R__#_____.Iris
Fi— o V-=q == —1-Waveguide
dﬂ Metal— | §

L~ ]

Ground Plane ™

Figure 2-2 Waveguide (Iris)/Microstrip Transition

of a coaxial/waveguide transition scheme described in the "Wave-
guide Handbook"4 authored by Dr. Marcuvitz. The thin aperture
at the end of the waveguide (microstrip ground plane) excites

the microstrip transmission line with an odd mode field pattern
and provides a two-way power division with a 180° phase relation.
The advantage in this design lies in the direct transition ap-
proach.

To facilitate fabrication, testing, and analysis, the iris wave-
guide/microstrip transition was first examined at 13 GHz. Figure
2-3 shows the waveguide return loss as a function of frequency.
This return loss translates into a 2.0:1 VSWR bandwidth of ap-

proximately 65 Mz, compared to a 2.0:1 VSWR bandwidth of approx-
imately 338 Miz for a microstrip radiator.

4 N. Marcuvitz, Waveguide Handbook, Lexington, Massachusetts, Boston

Technical Publishers, Inc., p. 174.

11
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A i Insertion loss is shown in Figure 2-4 and is split 3.6 dB and

V l 4.15 dB due to imbalance. These values convert to a total in-

3 sertion loss of 0.85 dB at the optimum frequency for the iris
transition. Another result predicted by theory is the 180° phase
difference caused by the odd mode excitation of the microstrip
line. In actual use the feed point of the array must be located

180° from the geometric center of the antenna array.

RN 92

An attempt to increase bandwidth obtained with the circular iris

E transition was attempted at 13 GHz using a dumbell shaped window.
' The return loss data shown in Figure 2-5 indicates a good imped-
ance match at a single frequency; however, bandwidth is still
limited. 2.0:1 VSWR bandwidth is approximately 26 MHz, less than
half that of the circular iris. Figure 2-6 shows insertion 1loss
for the tuning of Figure 2-5, and also insertion loss for tuning
to minimize insertion loss. Total insertion loss for these two

cases are 1.9dB and 0.8dB, respectively.

2.5 WAVEGUTDE (PROBLE)/MICROSTRIP TRANSITION

Investigation of the probe-type waveguide/microstrip transition
shown in Figure 2-7 was undertaken when the narrow bandwidth
characteristic of the iris-type transition became apparent. This
design incorporates a probe located 2/4 from a short in the wave-
guide and the design is quite straightforward. Two tuning screws
were used to tunc out standing waves in the waveguide. Gold
plated screws were used at 35 GHz and dielectric tuning screws
were used at 60 GHz. [Figure 2-8 shows return loss as a function
of frequency for a waveguide probe type transition at 13.0 GHz.
2.0:1 VSWR bandwidth is greater than 400 MHz, which exceeds the
expected 2.0:1 bandwidth of a microstrip radiator (=338 MHz).
Insertion loss is shown in Figure 2-9 for two back-to-back transi-
tions, indicating an approximate loss of less than 0.2 dB per |

transition over the 400 Mlz frequency range.

- J
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2.4 TRANSITTIONS - SUMMARY

Table 2-1 is a summary of bandwidth and insertion loss values at

13.0 GHz for the various transitions investigated.

Table 2-1
Transition Bandwidth and Insertion Loss
(13.0 GHz)
nsertion
2.0:1 VSWR |Insertion Loss
Transition Type Bandwidth Loss Bandwidth
Coaxial >400 MHz 0.11 dB Large
Waveguide Iris (Circular) 65 MHz 0.85 dB Narrow
Waveguide Iris (Dumbell) 26 MHz 0.80 dB Narrow
>400 MHz <0.20 dB Large

Waveguide Probe

Because the circular iris approach is more straightforward from

a fabrication standpoint, both the waveguide iris and probe con-
Since equipment limita-

figurations were investigated at 35 GHz.
tions prevented thorough measurements of transition performance
at 35 GHz, a discussion of the array/transition combinations 1is

included in Section 4 of this report.

20
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Section 3
ETCHING

5.1 GLASS PLATE NEGATIVES

Repeatability problems with etching early in the study indicated
a need to develop a highly refined etching technique for milli-
meter wave antennas. This problem was approached in two ways;
first through the use of glass plate negatives, and secondly
through a thinner copper cladding on the antenna substrates.

Since the 5 mil feed lines required in the 60 GHz arrays approach
microcircuit dimensions, the microcircuit etching technique of
using glass plate negatives was employed. These glass plates
provide greater stability as well as higher resolution than the
typically used film negatives.

3.2 COPPER THINNING

Another factor affecting tolerance during the etching procedure

is "undercutting.'" Typically, it can be expected that undercutting
at any etched edge will occur on a one-to-one proportion with the
thickness of the copper cladding. With the standard 1 oz. (1.4
mil) copper cladding, this becomes a significant problem when con-
sidering the 5 to 10 mil feedlines employed in the 35 and 60 GHz
arrays.

This situation was initially approached by developing a copper
thinning technique which reduced the original 1 oz. (1.4 mil)
copper cladding to approximately 1/2 oz. (0.7 mil).

Later in the study, BBRC obtained from the manufacturer a quantity
of substrate material with 1/4 oz. (0.4 mil) copper cladding.
Photographs of two 60 GHz arrays observed under identical magni-

fication are shown in Figure 3-1. One array was etched on a 1 oz.

e e =




1 oz. Copper Cladding

Figure 3-1 Photographs of Etched Circuits

22 ‘
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(1.4 mil) copper cladding while the other was etched on a 1/4 oz.
(0.4 mil) copper cladding. The effects of undercutting are very
obvious in these photographs. The 1/4 oz. (0.4 mil) copper clad-
ding is essential in maintaining the high etching tolerances re-

quired for work in the millimeter wavelength region.
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Section 4
35 Gliz 4x4 BLEMENT ARRAYS

4.1 COAX FED SCALED ARRAY

The first 35 GHz 4x4 element array to be fabricated and tested
was a scaled version of a 4x4 element array developed at 2.7 GHz.
The array was originally developed at 2.7 GHz due to the diffi-
culties involved in measuring performance parameters of individual
array elements at 35 GHz. Figure 4-1 shows the measured H-plane
radiation pattern of the 4x4 element array at 2.7 GHz.

The negative of this array was then reduced to the size required
for operation at 35 GHz. The first 35 GHz 4x4 element array was
etched on a 10 mil Duroid 5880 substrate having 1 oz. (1.4 mil)
copper cladding. A photograph of this array is shown in Figure

4-2. Measured I and H plane radiation patterns are shown in

Figures 4-3 and 4-4. These patterns compare very well with theoret-
ical computer generated patterns which are shown in Figures 4-5

and 4-6. The array had an actual operating frequency of 36.6 GHz
and was fed with a short section of 0.085" semirigid coaxial cable.

The following is an analysis of the array performance:

Theoretical Gain 17.84 dB
( G = 47 Area)
e
Measured Gain 16.00 dB

LLoss in feed cable

and connectors .40 dB

22 a2
o

Mismatch loss

(VSWR = 1.7:1) 0.30 dB

Actual Gain 16.70 dB

Efficiency X 17.84 dB - 16.70 dB = 1.14 dB = 77%

24
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Computed E-Plane Radiation Pattern (36.6 GHz)
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Losses resulting in the 77% efficiency can be attributed to di-
electric loss and feedline radiation.

4.2 WAVEGUIDE PROBE FED SCALED ARRAY

Another test antenna was fabricated using the 4x4 element scaled
array and the waveguide probe-type feed. The appearance of this
antenna is similar to that shown in Figures 4-7 and 4-8. Measured
E and H plane radiation patterns of this configuration are shown
in Figures 4-9 and 4-10.

Following is an analysis of the array performance:

Theoretical Gain 17.84 dB

Measured Gain 13.30 dB

Loss in_W@/microstrip N 3.00 dB
transition

Mismatch loss A 0.25 4B

(VSWR ~ 1.6:1)
Actual Gain 16.55

Efficiency % 17.84 dB - 16.55 dB 5 1.29 dB =~ 74%

Again, loss resulting in the 74% efficiency can be attributed to
dielectric loss and feedline radiation. The high amount of 1loss
attributed to the waveguide/microstrip adaptor was due to the use of
steel tuning screws in the waveguide. This loss was reduced to

less than 1.0 dB when the steel screws were replaced with gold-
plated screws.

4.3 WAVEGUIDE IRIS FED SCALED ARRAY

A third test antenna using the scaled 4x4 element array and the
iris-type waveguide feed was fabricated and tested. Measured E
and H plane radiation patterns of this antenna are shown in Fig-
ures 4-11 and 4-12. Resultls were not very encouraging. This
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Figure 4-8 Waveguide Probe Fed Array (Back View)
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can be attributed to the basic array design, through which feed-
line dimensions are predetermined. This does not allow optimum
sizing of the iris, thereby degrading impedance matching and

transition performance. The severe pattern degradation observed
in Figure 4-11 can result if the transition does not produce the
theoretical 180° phase difference in the feed lines (see Section
2.2). Since the two major feed lines are phased 180° to balance
the transition phase shift, an overhead null will appear in one
pattern plane if the transition is not functioning properly.

Since verification of array feasibility was the basic purpose of

the study, development of the iris-type waveguide transition was

discontinued and the probe-type transition was used in remaining

applications.

4.4 COAX FED ARRAY, NEW FEED SYSTEM

Analysis of the scaled 4x4 element array indicated that the array
feed system contained the largest potential for improved perform-
ance. This conclusion was arrived at for two reasons: first, the
scaled version contained impedance matching transformers only at
the first power division points. The remaining two power division
junctions were unmatched. Second, all feed line corners were
square, possibly contributing to spurious radiation.

For these reasons, a feed system was designed having matching
transformers at all power division junctions. These transformers
were tapered, and all sharp corner were rounded to reduce the
possibility of spurious radiation. This array was etched on

10 mil Duroid 5880 having a 1/4 oz. (0.4 mil) copper cladding.

Measured E and H plane patterns are shown in Figure 4-13 and
4-14,
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New Feed System
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An analysis of array performance follows:

Theoretical Gain 17.84 dB

Measured Gain 14.80 dB
] Loss in Connector > 0.20 dB
A Mismatch Loss

(VSWR 1.9:1) x 0.45

5 Actual Gain 15.45 dB
Efficiency = 17.84 dB - 15.45 dB =~ 2,39 dB ~ 58%

The reduced efficiency of this array indicates that tolerances of
feed line parameters are too sensitive to allow design by formulas

used at lower frequencies. It is expected that if taken through
development at a lower frequency, this feed system design will
result in an improvement in efficiency over the arrays described

in Sections 4.1 and 4.2.

4.5 35 GHz ARRAY SUMMARY

Table 4-1 is a summary of investigated array performance.
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e Theoretical
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Relative Bandwidth
Pattern Quality

Sidelobe Level
e E-Plane
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VSWR
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Table 4-1
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ARRAY PERFORMANCE SUMMARY

(36.6 GHz)

Waveguide Coax Fed/
Coax Fed/ Probe Fed/ New Feed
Scaled Scaled System
i
77% 74% g 58%
{
(
17.84 dB 17.84 dB 17.84 dB
16.70 dB 16.55 dB ‘ 15.45 dB
i
>400 Mz | >400 MH:z >400 MHz
Excellent Good Good

-15.0 dB
-12.0 dB
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~11.5 dB
-13.0 dB
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Section 5
60 GHz 4x4 ELEMENT ARRAYS

L% | WAVEGUIDE PROBE FED SCALED ARRAY

Two versions of the 60 GHz 4x4 element arrays were fabricated

and tested. One was a scaled version of the array developed at
2.7 GHz. This is the antenna shown in the lower center of Figure
5-1. The other was a scaled version of the array having a modi-
fied feed network developed at 35 GHz. This array is shown in the
upper center of Figure 5-1.

The scaled array was etched on 5 mil Duroid 5880 having a 1/4

0oz. (0.4 mil) copper cladding and was fed using the waveguide probe
technique. E and H plane radiation patterns of this antenna are
shown in Figures 5-2 and 5-3. Theoretical computer generated
radiation patterns of this array appear in Figures 5-4 and 5-5.

The array actually operates at 57.05 GHz.

Following is an analysis of the array performance:

Theoretical Gain 17.83 dB
Measured Gain 8.00 dB
Loss in W/G microstrip N 0.70 dB
transition
Mismatch loss N 0.10 dB
(VSWR 1.3:1)
Actual Gain 9.8 dB

Efficiency ~ 17.83 dB - 9.80 dB =~ 8.03 dB =~ 16%

Since etching tolerances and fabrication techniques become ex-
tremely critical in the 60 GHz region, it is expected that a
considerable portion of the efficiency loss can be attributed
to these areas. It would appear that further refinements in




Figure 5-1 60 GHz Arrays
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Figure 5-3 H-Plane Radiation Pattern (57.05 GHz) WG Probe Fed
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etching and fabrication will greatly improve antenna performance.
5.2 WAVEGUIDE PROBE FED ARRAY, NEW FEED SYSTEM

A second array was fabricated and tested using a scaled negative
of the array using the revised feed system developed at 35 GHz.
This array was also etched on 5 mil Duroid 5880 having a 1/4 oz.
(0.4 mil) copper cladding. The array operated at approximately-
57.4 GHz. Measured E and H plane radiation patterns of this ar-
ray are shown in Figures 5-6 and 5-7. These patterns compare
quite well with the theoretical patterns of Figures 5-4 and 5-5.

To facilitate fabrication of this antenna, a short piece of 0.085"
semirigid coaxial cable was used between the waveguide/coax trans-
ition and the actual array. Since the array functioned relatively
well, it was assumed there were no moding problems in the coaxial

cable.

Following is an analysis of the array performance:

Theoretical Gain 17.83 dB
Measured Gain 15.76 dB
Loss in waveguide/coax A 0.50 dB

transition
Loss in 0.6" of coax cable ~ 0.11 dB
Mismatch loss hy 0.37 4B
(VSWR 1.8:1)

Actual Gain 16.74 dB
Efficiency = 17.83 dB - 16.74 dB ~ 1.09 dB ~ 78%

The efficiency of this array is directly comparable with experi-
mental results obtained at 35 GHz. This efficiency value suggests
an undetected problem with the scaled array or a malfunctioning
of equipment during pattern measurements,
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The similar efficiency values at both 35 and 60 GHz indicate
that the advantages of the microstrip approach to antenna
systems do not deteriorate in the millimeter wave range.

5.3 60 GHz ARRAY SUMMARY

Table 5-1 is a summary of investigated array performance.
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| Table 5-1
‘f ARRAY PERFORMANCE SUMMARY
(57.05 § 57.4. GHz)
Waveguide Probe Waveguide Probe
Fed/Scaled Fed/New Feed
System
! Efficiency 16% 785%
Gain
ﬁ e Theoretical 17.83 dB 17.83 dB
! e Measured 9.80 dB 16.74 dB |
Relative Bandwidth >800 MHz >800 MH:z |
Pattern Quality Good Excellent '
Sidelobe Level
- | e E-Plane x ~18.0 dB ~ -12.2 dB
: | e H-Plane x~ -17.0 dB ~ -18.0 dB
VSWR 16 siel L. 81
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Section 6
EQUIPMENT

6.1 TEST SETUP

To facilitate impedance and radiation pattern measurements, a test
fixture was fabricated to accommodate the Impatt source, attenuat-
or, and frequency meter for both the 35 and 60 GHz applications.

A photograph of this fixture is shown in Figure 6-1. f

In addition, a second horn antenna was fabricated for each fre-
quency for use as the R.F. source antenna. This made available

the purchased standard gain horns for use as references in making

comparative gain measurements.

L DTt Ly




2IN3XT 3S9L "4°d T1-9 @indtg

Lo




T MR i A T R A 0

4
F77-07 Wl

Section 7
CONCLUSIONS AND RECOMMENDATIONS

75 CONCLUSIONS

Overall results of the study are extremely encouraging. A 4x4
element microstrip array having an efficiency of 77% at 35 GHz
has been developed, fabricated, and tested. Similar arrays
operating at 60 GHz have achieved efficiencies of 78%.

Two types of substrate material, Polyguide and Duroid 5880, were
analyzed during the 35 GHz portion of this study. Polyguide has
a dielectric constant of 2.26 and a dissipation factor of 0.00027
at X-band, while the Duroid 5880 has a dielectric constant of
2.20 and a dissipation factor of 0.0009. Because of its composi-
tion, the dielectric constant of Polyguide is also more uniform
within a given area of material.

This data suggests that Polyguide should be a preferable sub-
strate material. Test results, however, indicate the performance
of the two materials is essentially identical. Duroid 5880 was
chosen for the remaining testing because it is much easier to
work with. Polyguide has a tendency to curl when etched and also
melts when heated, as occurs when soldering feedlines and con-
nectors to the array.

Measured radiation patterns both at 35 and 60 GHz compare very
well with theoretical predictions. Main beam beamwidths are
comparable and sidelobes and nulls occur in the predicted posi-
tions. First sidelobes are down approximately 12 to 13 dB,
which agrees with theory for a uniformly illuminated array.

Usable bandwidth of the 4x4 arrays appears to be approximately
one percent, which is comparable with typical microstrip antennas
at lower frequencies.
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T2 RECOMMENDATIONS

Two recommendations should be stressed in further development

of microstrip millimeter wave antennas. First, as mentioned in
Section 3, it is essential to use substrate materials whose
copper cladding is as thin as possible (i.e., 1/4 oz. or 0.4
mil). This thin cladding greatly enhances the ability to main-
tain close tolerances while reducing the effects of undercutting

during etching.

Secondly, to obtain maximum performance, millimeter antennas
should first be fabricated and optimized at a lower scale fre-
quency. This allows a much greater ability to refine antenna
performance than is available at the millimeter frequencies,
where measurement limitations inhibit accurate determination of

individual component performance.
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